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FUZZY IDENTIFICATION OF ENERGY-EXCHANGE MODELS 

FROM TECHNOLOGICAL PROCESSES 

N. V. Diligenskii, P. V. Sevast'yanov, 
and N. V. Tumanov UDC 536.24 

An identification method is proposed that enables one to estimate the parameters and 
also to evaluate the model performance. The method is based on fuzzy-set theory. 

Very often, there are several competing models available to simulate a complex pheno- 
menon or process, and these contain adapted parameters that require experimental identifica- 
tion. 

Leaving aside aspects such as the computer run time and the algorithms involved, we can 
say that the best model is selected on criteria for accuracy and physical acceptability in 
the values obtained for the adapted parameters. The estimates of accuracy and physical accept- 
ability are dependent on fuzzy factors involved in the subjective preferences of those develop- 
ing and using the model, so it is desirable to use the theory of fuzzy sets to formalize the 
choice of the optimum model [I]. 

This analysis is made with reference to simulating the thermal and energy processes in 
the hot rolling of aluminum alloys. The following form can be given for the basic model for 
the processes in the rolling cage, which is represented by a system of nonlinear algebraic 
equations [2]: 

Ti-= [(cr, (z, P, To, Ho, Hi, v), (i) 
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TI+T~ Ho, H1, v) P : g ~' ~ '  " (2)  

We compare the model for calculating the force on the roll based on generalization from 
the experimental data: 

P.----2LDBk(1,51n 1 -4-1,5M--0.5), M= L D 

P = 2 L o B k  lnM ,+ , M ~ I ,  

and Sim's theoretical model [3]: 

P = 2Lo Bk arctg 4 

< 1, (3) 

(4) 

,__x v,-. -, --X R in Hay .+ In. X = - - .  (5) 
Ht H1 2 Hi X ' Ho -- Hi 

The dependence of the roll force on temperature is incorporated via the deformation 

resistance k=af1(T)f2(Hb Ho)f3{v) ; the adapted parameters in the models of (i), (3), (4) and 

(i), (5) are the heat-transfer coefficient e from the strip to the roll and the deformation 
resistance o for particular alloys under standard conditions. 

In the experiments, one measures the force P on the rolls and the temperature of the 
e 

strip in the last cage T . 
e 

The accuracy criteria are specified in the form of a function in which the calculated 
values P and T belong to the range of values in which they correspond closely to the ex- 

C C 

perimental data CI(Pe - Pc), C2(T e -- T c); the functions CI and C2 take maximum values of 

one for ]~--P= I ~61, I Te--~ l~b2, correspondingly, and monotonically decrease to zero as the 

calculated values deviate from experiment. Here CI is unsymmetrical because for technologi- 
cal reasons it is preferable to obtain overestimates for the calculated forces on the rolls 
rather than underestimates. The functions C3(~), C4(o) for the relation to the physically 
permissible range are also specified as values normalized to unity on the basis of published 
data. If there is no information on the degrees of preference for the various values of the 
arguments in CI, C2, C3, and C4 within the permissible ranges, then these fuzzy criteria 
degenerate into ordinary constraints of ~nequality type. 

For each point from experiment Pei' Tei' the intersection of the criteria for accuracy 

and physical feasibility of the model 

D~ = [C, ( g  i - -  Pc)l=' N [C~ ( ~  ~ - -  T : ) ]5 '  n [C3 (a)]=' 0 [C~(~)] =' (6) 

will be dependent only on the adapted parameters ~ and o. Following [3], for the intersec- 

tion n we use the operation of taking the minimum, while the absolute ranks of the criteria 

~i, ~2, ~a, ~4 are calculated from the criterion pair-comparison matrix. 

Clearly, an ideal and absolutely correct model should maximally satisfy all criteria for 

each experimental point. Therefore, Di, u, max= max [D~, u(~, 0)] = 1 for an ideal model for any 

experimental point i. In that case, D. for a real model can be considered as a measure 
i, max 

of the closeness of the model to the ideal one or as a measure of the model performance for 

the given experimental point. 

The overall performance measure for a set of N experimental points can be taken as the 
average estimator for the performance measure: 

1 N 

DaY = N Z Duna~. (7) 
i = l  
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Clearly, the optimum model will be the one that provides the largest value of D . 
av 

This method enables one to estimate the adapted parameters while choosing the optimum 

model. Let Do be attained on a given set of experimental points together with the 1 max 
corresponding ~i and ~. providing maximum values for the D.. The value of D. can be 

l l i max 
interpreted as the degree to which experiment point i belongs to the region of adequate 
operation. Then the parameters are estimated from the formulas 

N N 

i--I i : I  

N N 

(~ --~- "~" (~ i D imax / ~ Dimam. ( 9 )  

i : l  i=1 

As a result, the parameters are estimated on the basis of the performance or degree of 
suitability for the various experimental points in the model identification, and one uses 
the same information as in estimating the model performance. 

Clearly, the results from fuzzy identification will be dependent on the form of the cri- 
terion. A global criterion of the form of (6) can be used with various ranking coefficients. 
Here it is possible that in some experiments it proved impossible to make complete measure- 
ments of all the output variables, for example, one measures only P or T or the experiments 

e e 
were performed at different times and with different accuracies. 

For all these cases one can construct the corresponding global criteria D~, D2, D3, etc. 
The person who makes the decision in choosing the model always has some concepts on the best 
form for the global criterion, so each of the D~, D2, Da can be put into correspondence with 
the value of the function @(D) representing the relation of this criterion to the hypothetical 
best one [4]. As a result, the ideal performance criterion D may be represented as a fuzzy 
subset. For example, for the three criteria, 

D= { " q~(DOD~ ' ~p(D~)D.,. , (p(Da)Da } " (10) 

On the other hand, the values of the criteria D~, D2, D3 themselves can be considered as 
fuzzy functions for the models belonging to the ideal ones. For example, if one compares 
two models YI and Y2, then (i0) is put as 

D __. ~(D,) ~(D2) 

Yi Y2 Y1 Y2 (ii) 

/ .  { Da(YI) Da(Y2)}y~ 

Here the solution amounts to defining the model YI or Y2 having the maximum assignment func- 
tion in D. Here DI(YI), DI(Y=), D2(YI) and so on are taken as means on the set of experi- 
mental points. 

In the above example, the rolling-model performance was estimated from data obtained 
with a continuous-running hot-rolling mill for three aluminum alloys. In all cases, the 
forces and temperatures were measured simultaneously on the last cage. 

The measurements in all the experiments were made with the same accuracy, so the task of 
fuzzy identification was to maximize the function of (6) for each point with respect to ~ and 
oi' where P and T were calculated either from the model of (i), (3) and (4) or from the 

C C 

model of (i) and (5); (8) and (9) were used to calculate D for each of the models and to 
av 
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estimate ~ and o. The maximization was performed by a modified form of the Mark-Quardt 
method and by successive quadratic approximation. 

The alloys AI, DI6, and AMg6 were used in the experiments, and for each alloy we took i0 
experimental points differing in rolling scheme. The model performance was evaluated by 
averaging over all 30 experimental points, while the parameters were estimated for each alloy 
separately, since they have different o under standard conditions~ It was found that the 
best model was Sims's one with Day = 0.81, with a somewhat lower value Dav= 0.73 for the 

criterial model. The estimates of ~ for the various alloys were within the limits of the 
natural spread for aluminum alloys, while the estimated values of ~ for the various alloys 
differed by not more than 10%. As these models are insensitive to changes in e, one can take 

as the same for all the alloys, which does not conflict with the physics of the process. 
The studies confirm that this method is effective in identification with simultaneous estima- 
tion of model performance with fuzzy criteria. 

NOTATION 

TI, T2, inlet and outlet cage temperatures; P, roll force; Ho, HI, strip thickness at the 
inlet and outlet; v, rolling speed; L D grip arc length; B, strip width; H mean thickness 

' av ' 

of the deformation site; R, roll radius; Pe, Te, measured roll force and temperature behind 

the cage; Pc' Tc, calculated roll force and temperature. 
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